Archives for posts with tag: shockwave

Social Media continues to be flooded with images, stories and statistics about the Concorde, a troubled engineering marvel that retired in 2003. The ‘Concorde’ feed highlights the love and awe the aircraft inspired. The retirement had a sense of finality about it, like a curtain being drawn, not on just the Concorde but on Supersonic Travel itself, the reason being the issues were not about the aircraft but about the accompanying noise pollution at take off ,landing and the shadow called the sonic boom.

Boom Supersonic a startup founded in 2014, but birthed in the mind at least 2-3 years prior decided to do something about. Their CEO Blake Scholl decided he was going to make a supersonic aircraft that not only went supersonic , but was quiet and without an accompanying sonic boom over land. This is the story of The Overture and is part three of the QueSST series which you can read here. https://theaviationevangelist.com/2025/10/09/the-boom-xb-1-the-little-plane-that-could/ & https://theaviationevangelist.com/2025/11/04/the-lockheed-x-59-quesst-pinocchio-swordfish/

The Overture First Iteration

The first iteration of the Overture was unveiled in Nov 2016 along with the first iteration of the XB-1 the one third scale technological demonstrator of the Overture, and both of them looked extremely similar to what the Concorde looked like! The difference being the technologies available in 2016 vs 1969 when the Concorde first flew.

Overcoming the laws of physics means any supersonic aircraft needs to be shaped a certain way, and this is where the Concorde design was lightyears ahead of its time. Concorde was the only successful supersonic jet and it made sense to look at the Concorde baseline, the original Overture was to be a trijet as was the original XB-1.

By 2018 the XB-1 subscale model was ready for wind tunnel tests and the first set of tests confirmed the predicted aerodynamic calibrations that were arrived at through CFD was off by 30%. Such a difference keeps magnifying as it goes up in scale to the full sized Overture. The Team at Boom had to go back to the drawing boards after almost 4 years of work and rework the design of the XB-1 which in turn would impact the Overture.

The very first iteration of the the Overture & XB-1 : Pic Source : The Independent

Repeated finetuning of the design resulted in the XB-1 that broke the sound barrier in early 2025 with no apparent sonic boom (uses a concept called Mach Cutoff), the jet itself was still in a trijet configuration but looked considerably different from the original when it rolled out on Oct 7,2020.

The tests (both CFD & wind tunnel) highlighted the design on the final XB-1 was not scalable to the Overture and there would have to be a complete rework on the fuselage, wings and engines of the Overture. Some of the highlighted issues were high take off and landing speeds due to the very low aspect ratio on the reworked XB-1’s wing, the very high angle of attack that Boom addressed with an augmented reality system, a trijet would not produce enough thrust practically to push the bigger Overture to supersonic.

In July 2022 Boom unveiled its significantly reworked Overture. The unveiling was done after considerable CFD testing followed by wind tunnel testing across five locations in the USA & Europe covering various flight regimes.The fuselage and wings looked extremely sculpted and the aircraft featured four underwing podded engines instead of the original three.

The Design

At transonic speeds (Mach 0.8-1.2) local air flows accelerate over and around the aircraft fuselage and wings can reach the speed of sound. The minimum speed at which this occurs varies from aircraft to aircraft and is known as critical Mach number. The shockwaves formed at these localized zones cause a sudden increase in drag is called wave drag. To mitigate the strength and number of shockwaves an aircraft’s cross sectional area needs to transition smoothly from front to rear. This is known as Whitcomb Area Rule of 1952 .The phenomenon was observed in various forms by multiple aerodynamicists before Whitcomb.

In the case of the Concorde the area rule was applied at Mach 2 and the rear fuselage was extended by 12.2’ on the production aircraft over the prototype and reduced wave drag by 1.8%. A similar concept was applied to the first iteration of the Overture and XB-1, the results we have already spoken of. The final iteration of the Overture extensively uses the area rule to maximum effect.

The external specs of the Boom Overture are a length of 201 feet ,a wing span of 106 feet and a height of 36 feet. The interior cabin is expected to be 79 feet in length with an aisle height of 6.5 feet, good enough for a tall person to walk through at full height. It will be capable of Maxh 1.7 at 60,000 feet cruising altitude and a max range of 4.250 NM approx 350NM more than the Concorde. https://apnews.com/press-release/pr-newswire/technology-airlines-climate-and-environment-7e88c34a01a4194c6f1e6b4760d2bb86

A front view of the nose is the first observation of the rule. Where subsonic aircraft bodies in general are circular to oblong in appearance the Overture’s nose and body behind has a distinct oval shape (left ↔️right) like an egg starting from a singular point the tip of the nose. Much like the final XB-1 the nose slopes upwards at a much higher angle from the nose tip than the bottom, like a cone that has been pushed down flattening the bottom. The oval shape of the nose permits the cabin to have the maximum permissible height allowing for passenger comfort as they walk through the aisle while at the same time minimizing aircraft front on cross section. The reason for the differing angles top and bottom of the nose tip is to control shockwaves. One of the main lessons learnt from the XB-1 was shockwaves tend to be unpredictable when the nose is a perfect cone and sometimes tend to blanket the vertical stabilizer, doing so prevents the occurrence and ensures a smooth flow over the nose and aft across the fuselage.

A front view of the Boom Overture: Pic Source: Boom Media Assets

The nose slopes up to the cockpit windshield, the cockpit is the widest and tallest part of the fuselage. Much like the XB-70 Valkyrie where the wasting is clearly visible as the fuselage narrows down towards the tail from the cockpit the Overture does the same. In Fact the black stripes that extend from the cockpit and run rearwards forming an incomplete loop around the widest part of the fuselage looks almost Jumbo Jetish from a top view. The fuselage belly is comparatively flat and a similar design is seen on the XB-1. 

Where the Concorde had a drooping nose which was had heavy hinges and actuators, the Overture does away with the entire mechanism and instead has an augmented reality system tested on the XB-1. If the Overture’s system is like the XB-1’s it will have two 4K cameras that are mounted on the nose gear (so they can be retracted completely in flight), the cameras will be at least one large bird’s wingspan apart to build redundancy against bird strikes. The screen inside the cockpit will display a composite image along with airport markings etc if at ground level. The system is a huge weight saving over the Concorde of approx 1650 pounds.

The gull wings of the Overture have a complex geometry.

Boom – FlyBy – It’s About Time For a Bold New Era of Supersonic Flight . The modified delta planform has several special design tweaks to it. The wing appears to have a dihedral angle at the wing root and inboard section which transitions to an almost flat to anhedral angle at the outboard sections. A positive dihedral (approx 3-5° upward angle) helps with lateral stability and keeps the passenger cabin level at cruise. The flat to slight anhedral angle of approx 1° helps optimize supersonic wave drag while maintaining aileron command. The underside of the wings appear to be blended into the fuselage to soften shockwaves.

A side view of the Overture. Note the wing architecture & staggered engines. Pic Source : Boom Media Assets

A look at the leading edge from the top shows off a clear kink much like a cranked delta on the inboard form. The kink slows down the air over the wing even as the aircraft is supersonic. Imagine if you were running towards a fence that is perpendicular to you, when you hit the fence all of you hits it at once, now imagine the fence is at an angle and kinks slightly towards you, when you first run towards it the first bit goes much faster than the rest of the wing after the kink, even though you are running at the same speed and only a little bits of you hits the fence as you keep running, the same is good for the gull wing. The inboard kink generates a powerful vortex at high AoA over the inboard wing which generates lift at takeoff & landing. The vortex prevents air separation and stalling at high angles of attack.

A top view of the Overture. Note the kinks on the leading and trailing edges of the wings and the cropped wingtips. Pic Source : Boom Media Assets

The steep inboard sweep which is in the region of 70-75° transitions to a shallower sweep in the region of 50°, the sweep change happening at the kink or crank, the leading continues its transitionary sweep through to the wing tips The steep inboard geometry delays shock formation and reduces wave drag at Mach 1.7 while the shallower outboard sweep increases wing area which in turn boosts lift while at the same time delaying stall formation. The crank or kink creates a natural break between the inward vortex lift and the outboard attached flow, such geometry results in superior roll authority across the speed regime.

The leading edge further shows a thicker front view profile than the Concorde did, this helps generate more lift across the speed range while at the same time exhibiting heavy contouring. Where the Concorde had an S curved leading edge that was sharp and thin, the Overture has a more ‘traditional airfoil’ although there is nothing traditional about it. At the wing roots the wings tend to blend upwards (dihedral angle) into the tapering fuselage while they drop downwards (neutral to slight anhedral angle) and lower towards the cropped wingtips. Such a design naturally helps with managing roll and gives the wings the distinctive gullwing shape.

The Overture’s cropped wingtips represent an evolution over the Concorde’s pointed ogival delta tips. On the Concorde the tips maximized the wings aspect ratio (span to average chord ratio) while helping minimize wave drag, however they were vulnerable to flutter (vibrations at high speed) on the overture the cropped wingtips ensure the aircraft maximizes area ruling through the whole profile cross section, while details of the crop are not available, we can expect the wing to be about 10-15% more efficient in fuel burn per passenger. Since a large portion of the flight time will be in the subsonic/transonic regime, the cropped wings lessen induced drag aiding quieter takeoffs (the Overture aims to be below 75dB). At supersonic speeds the sharp tips of the Concorde amplified the sonic boom , while the Overture’s cropped wingtips combined with the gullwing design soften the boom signature.

The trailing edge of the wing has a very obtuse lambda (Λ) on it. The first function of the Λ is vortex control, if you look at it relative to the leading edge kink (the vortex generator) it is slightly outboard from it. The shape helps break up and weaken these vortices as they exit the wing surfaces by inducing geometric discontinuity. The trailing edge shape also acts a sonic boom diffuser by preventing the coalescence of shocks and softening the boom overland. The trailing edge Λ and the kink on the leading edge means the wing is also called a cranked arrow.

The Λ on trailing edge helps low speed handling and stall characteristics by promoting an earlier flow separation at the root encouraging an inboard to outboard stall pattern. The overall wing design should have a washout. The trailing edge Λ further reinforces the area rule ethos of the aircraft. The edge has an inboard flap  inboard of the kink and an outboard flap that appears to begin exactly on the kink. On the outermost part of the edge is the aileron. https://boom-press-assets.s3.us-west-2.amazonaws.com/Newsroom-Media-Assets/Overture/Videos/Overture-Systems-Configuration.mp4

The four symphony engines of the Overture appear staggered  and spaced out with the inboard engines about 5 feet in front of the outboard engines (no specifics available). The staggering enables the coke bottle design (area rule) and synergizes with the wing’s highly sculpted gull wing design to minimize shockwaves at Mach 1.7, increasing range. The offset also helps with yaw control in the case of asymmetric thrust and improves low speed handling as against the Concorde’s close engines placed further back on the aircraft fuselage.The engine setup looks like a B-58 Hustler from the 1950-60s. The Hustler itself was yet another troubled but genius engineering marvel, from a time when supersonic aerodynamics understanding was still in its infancy.

The wings transition towards the empennage of aircraft. Unlike the Concorde that had an ogival delta that used elevons (combination elevators and ailerons) the Overture has a traditional aircraft’s tail with vertical and horizontal stabilizers. The vertical stabilizer’s slanting leading edge appears to land on the top of the wasting fuselage at the same spot the wingtip’s trailing edge outboard corner finishes, respecting the area rule principle. With a height of approx 18-20 feet and an area of 450-500 sq ft the stabilizer has more area than the Concorde’s at 380 sq ft and height of 27 feet. The rudder on the vertical stabilizer enhances directional stability at high AoA and provides authority in an engine out situation.

The span of the horizontal stabilizers is approx 55-60’ and an area of approx 350-400 sq ft. The stabilizers are set at a slight anhedral angle of 3-4° (cannot confirm) work closely with the vertical stabilizer and provide the aircraft with pitch authority. The control surfaces on the horizontal stabilizers are actually at the very tail of the plane and are again placed in such a manner once again to respect area ruling. The stabilizer is trimmable to manage the angle of incidence for various speed regimes and centre of gravity shifts.

An image showing the structure of the Overture. Pic Source : Boom Media Assets

The landing gear of the Overture is a tricycle setup with the nose gear having two wheels which retracts into itself and forward into the fuselage to lessen its volume profile. The main landing gear features six wheels on each bogie , which is highly unusual for an aircraft weighing in at approx 415,000 pounds. So why take on the additional weight and space? Delta winged aircraft have a normal landing speed of approx 140-160 kts which is considerably faster than a normal subsonic airliner which 135 kts such a speed will require additional braking power plus the added redundancy in case of a blow out.

AoA at take off and landing has always been the central focus to the Concorde’s design. At take off the Concorde’s AoA was between 15-18° and landing approx 15-17°, such an angle was steep enough to entail the droop nose to manage visibility. The Overture with it’s wing and tail design is expected to have a take off AoA of approx 12-14° and a landing AoA of approx 11-13°. Visibility is managed by the augmented reality cameras spoken of earlier. For reference the 777 has a take off AoA of between 12-18° and touchdown of between 6-8°. The Overture aims to have an almost subsonic aircraft type of landing angle.

Design reference points: Boom – Overture & https://boom-press-assets.s3.us-west-2.amazonaws.com/Newsroom-Media-Assets/Overture/Videos/Overture-Systems-Configuration.mp4

The Engines

Engines are the key to any aircraft’s success and in the case of SST’s they assume an added importance. They need to be capable of speed, be quiet & efficient in addition to being 100% SAF (Sustainable Aviation Fuel) compatible. Such engines can be expensive to develop and need fresh though and innovation at each step of the design and construction process. To understand SAF read here. https://theaviationevangelist.com/2025/09/25/alternative-aviation-fuels/

By 2017 Boom was on the lookout for an engine partner and Rolls Royce looked the part with their previous experience developing Concorde’s Olympus Snecma 593 turbojets. The partnership with Boom looked like the natural step forward ushering in the sustainable supersonic era (the engines were to be 100% SAF compatible) and the partnership was announced with much fanfare in July 2020. After two years embedded with the Boom Team in Colorado as they narrowed down engine specs and characteristics and then the partnership fell through in September 2022 and by December 2022 Boom decided it was going to develop the Boom Symphony engines inhouse. The parting was cordial but stiff with RR saying that developing a supersonic engine was low on their priorities list and Boom stating they were appreciative of RR’s work.

The reality was RR was wary of another Concorde like disaster where they lost the equivalent of $1.32 Bn per aircraft and did not have the wherewithal to go through the development pains in the tough economic scenario the World was currently in (COVID). Boom for their side felt the engines offered, a low bypass Pearl 700 used in Bombardier Jets aiming for 30-35,000 pounds of thrust per engine with modifications such as the inlets and exhaust with chevrons would seriously compromise efficiency by approx 23-30% below Boom’s targets. Several options were studied but nothing came off. There was added pressure on RR with the worldview on emissions (supersonic aircraft burn 3X fuel compared to subsonic aircraft) and RR’s failed partnership with Airion developing the infinity engine which ended in 2021 with Airion folding up.

Further partnerships were explored by Boom with GE, Pratt & Whitney and even Safran but all of them declined to partner, this is when Boom decided they are going it alone.

The Boom Symphony. Pic Source: Boom Media Assets

The exterior dimensions of the Symphony engine are a length of 42 feet & height of 7 feet. The supersonic inlet is 12 feet in length with the variable geometry exhaust at 19 feet, the turbofan and sprint sore section at 11 feet.The Symphony is a medium bypass twin spool engine with 3 low pressure & 6 high pressure compressors with no afterburner developing 40,000 pounds of thrust per engine.The design of the engine is optimized to the Overture and is 100% SAF compatible.

All engines have three phases suck, bang & blow. The suck is done by the main frontal fan and compressors. The bang is in the sprint core and the blow is through the high & low pressure turbines just before the exhaust.

The inlet of any SST engine is where the magic happens. While the aircraft is supersonic the engines can only gulp in air at between 400-500 mph. The inlet is where the air is slowed down by use of shockwave creation. In the case of Concorde a series of ramps and bleed valves for excess air was used to slow the air down to approx 500 mph from Mach 2. The architecture of the Overture and Symphony is different where the engines are podded below the wings instead of being integrated into them in a cluster as on the Concorde. The Inlet of the Symphony is axis symmetric with a spike at the central axis (much like the Lockheed SR-71). The spike moves back and forth as per the speed of the aircraft and manages the inlet shockwave. In the case of the SR-71 the central spike moved back up to 26” at high supersonic flight. The Symphony will probably be up 18” (speculation).

Boom is currently in the advanced prototyping phase and last month they announced that 95% of all parts were done and have been moved to manufacture. Boom is making use of extensive 3D printing of parts at their printer farm (additive manufacturing) for a number of parts being used in the Symphony prototyping phase. The Sprint Core currently being tested has 193 3D printed parts. The alloy used is Haynes 282 a nickel based alloy that can withstand extreme heat and stress.Such an approach enables rapid prototyping & iteration. An example of the speed they work at is they prefer vertical integration (in-house manufacture) vs waiting upto six months for parts to be delivered and choose to spend a couple of million dollars on the required machine instead.

Currently the Sprint core is being tested at Georgia Tech’s Combustion laboratory where the hot section is currently being put through its paces. Similarly each component of the engine will be tested independently, such an approach saves time and helps with iterations. Once testing is complete across all the engine components, they are integrated into the prototype engines, fired up and parameters checked.

Blake says the Symphony expects to generate thrust early 2026. Such a tight timeline places great pressure on the propulsion team.

Generating 40,000 pounds of thrust on-time is critical to Boom’s future funding (will speak about this).

Symphony Reference: Fact Sheet

The Superfactory, Construction, Assembly & Partners

The 180,000 sq ft Boom Superfactory has been constructed by BE&K building group and cost approx $100 Mn to construct. Boom Supersonic Overture Superfactory | BE&K Building Group . The superfactory is at Piedmont Triad International Airport in North Carolina on 65 acres of leased land, which incidentally will also host the factory producing JetZero’s Z4 Blended Wing Body Aircraft. As per a press release, Boom plans to invest $500 Mn in NC of which the building is $100 Mn, that leaves approx $400 Mn in terms of tooling yet to come in. Governor Cooper Announces Boom Will Manufacture Supersonic Aircraft in North Carolina Creating More Than 1,750 Jobs by 2030 . The Superfactory is where the final assembly of the Overture will take place and there is an entire ecosystem of partners involved in constructing the individual parts. Some of them are Aernova for the wings (they list Boom as a top innovation). https://www.aernnova.com/products/wings . Safran Landing Systems will be manufacturing the Overtures beautiful landing gear. https://boomsupersonic.com/press-release/boom-supersonic-and-safran-landing-systems-sign-supplier-agreement-for-overture . The Overture’s empannage is manufactured by Aciturri.There are several other key component suppliers who are part of the ecosystem to help make the Overture flight ready.Fact Sheet. All of them are currently design ready .

Most of the Overture will be carbon composite including the fuselage, wings & empennage. Titanium will probably be used in high stress areas such as the landing gear, engine bays and wing & stabilizer leading edges. The engine internals will have alloys such as Inconel in addition to Haynes 282 mentioned earlier. The Superfactory will have autoclaves (large ovens that cure the layered prepeg under pressure). To put a cost perspective autoclaves can cost up to $4 Mn a pop.

The Overture inflight. Pic Source: Boom Media Assets

Cash Runway

Developing the Overture is estimated to cost approx $8 Bn up from a previous estimation of $6 Bn. Boom has so far raised approx $700 Mn through 12 rounds of funding and the investors have shown patience through the iterations process. However Boom is still well short of the required number by a long way. An IPO might be a way forward, but it will not bridge the gap.

The last funding round in late 2024 was termed as a series A showing a reset within the company, the valuation down to $584 from peak valuations of $1Bn and even $6Bn after the Aug’24 funding. Looking at the volatility of the valuation, it is extremely important for Boom’s Symphony engines to generate 40,000 pounds of thrust in early 2026, this can very well pitch the valuation up skywards and open a round of extremely high funding, Boom should target at least $1 Bn or more (thrust is the single most important milestone from here on) raised after the thrust milestone. 

In Nov ’23 Neom Investment Fund invested in Boom as a strategic investment. NIF is a subsidiary of Saudi Arabia’s Public Investment Fund (PIF) and is a key vehicle to Prince Mohd Bin Salman’s Vision 2030, an ambitious plan to diversify Saudi Arabia from its oil dependence. If PIF’s investment in Lucid Motors is any indicator where they have become a majority shareholder with over $8 Bn invested in a relatively short period. Boom has much to look forward to as they generate thrust and tool up their superfactory.

An IPO will probably be at either the Overture’s first supersonic flight or just as FAA certification progresses past 50%. Boom has been working very closely with the FAA at each step and only moves with each part after the FAA certifies it, this vastly cuts lead time. Some of the other aerospace startups like Joby & Archer Aviation have valuations that are at ± $10 Bn and Boom should target at least that much if not more.

Innovation at Work.

Before you Leave.

Read More Amazing Content at: https://theaviationevangelist.com keep scrolling down, do share.

Follow me:

LinkedIn : https://www.linkedin.com/company/the-aviation-evangelist/

X : @ManiRayaprolu

Reddit : r/theaviationevangelist

Facebook : https://www.facebook.com/profile.php?id=61583497868441#

https://www.instagram.com/theaviationevangelist?igsh=ZjA5YXI3MWd3OGZs&utm_source=qr

Introduction

The X-59s first flight last week was a major step in NASA’s Quiet Supersonic Technology (QueSST) program. Every aircraft that flies supersonic is accompanied by the shadow of the sonic boom (read about it here : https://theaviationevangelist.com/2025/04/13/shockwave/ ). QueSST’s aim is to fly supersonic with no audible sonic boom. To achieve that there are two approaches. The first is to use atmospheric refraction (where the sonic boom makes a U-Turn back towards the sky) like what Boom Supersonic achieved with its XB-1 (read about it here : https://theaviationevangelist.com/2025/10/09/the-boom-xb-1-the-little-plane-that-could/ ) and the other is to engineer sonic booms that are weak and do not have the strength to reach Earth, and if they do, are very weak and barely audible. Enter the QueSST program.

A subscale model of the X-59 in a wind tunnel test, showing shock wave formation points. Pic Source: NASA

The QueSST Program

The 1973 supersonic over land ban was a bodyblow to the Concorde and civilian supersonic travel over land in the USA.  While supersonic travel in general went into hibernation and Concorde motored on until 2003, the writing was on the wall. For supersonic travel to be profitable, aircraft needed to have the ability to travel supersonic over land and to achieve this, they needed to have no audible sonic boom.

NASA’s High Speed Research (HSR) program which ran between 1990-99 focused on a High Speed Civil Transport (HSCT) that would be environmentally acceptable. The program took into account fuel burn, emissions and of course noise pollution from sonic booms. The aircraft was to be Mach 2.4 capable and have a 300 passenger capacity. The tests involved tracking a Concorde in a U-2 spy plane to measure high altitude emissions and even had sonic boom mitigation technologies tested using a Lockheed SR-71 testbed. New engine nozzle technologies were tested to reduce takeoff and landing noise (on the Concorde the afterburners are responsible for the 110dB noise level). The HSR was probably the first time Computational Fluid Dynamics (CFD) was used to test new innovative designs. 

A heavily modified T-38 Talon and a F-4 Phantom in addition to F-16XLs were used to validate these designs and collect a database of sonic boom signatures, which could be applied to future aircraft designs. While Schlieren photography had existed for over a hundred years, NASA innovated on the technique and created Air-to-Air Background Oriented Schlieren Technique (AirBOS) where a full sized aircraft could be photographed using the Sun as a background to see where the shockwave formation and their interaction with each other and ambient surroundings.

An image of a T-38 flying in close formation with a second T-38. Note the shockwave interaction off the tail of the aircraft. Pic Source: NASA
Schlieren image of both T-38s in close formation. Note the shockwave interaction. Pic Source: NASA

While the actual HSCT program itself ended in 1999 due to lack of funding and Boeing’s withdrawal from the program , the AirBOS series of the tests continued through the 2010s, of note were 2019 flights featuring two T-38s going supersonic at close formation and the shockwave interaction of the two planes.

Lockheed Martin was awarded the preliminary design contract for the X-59 by NASA in 2016.

The X-59 First Steps

The design parameters were to create a Mach 1.42 capable aircraft with a service ceiling of 55,000 feet and a supersonic perceived sonic boom of not more than 75dB, the equivalent of a car door being shut (https://ntrs.nasa.gov/api/citations/20220009074/downloads/QuesstMissOvuaX59Pres_050822r.pdf) . This puts the X-59’s perceived sound over 10 times quieter than the Concorde’s 110dB.

The preliminary design steps were to create a 9% subscale model that could be tested in a wind tunnel between Mach 0.3 – 1.6. Lockheed was finally awarded a $247.5 Mn contract to design and build the low boom X-59 in April 2018, the designation X-59 QueSST would follow in June 2018.

The X-59 Design

The design approach to the X-59 was to alter the aircraft’s shape & aerodynamics to prevent shockwaves from merging into a loud sonic sonic boom, instead the design was about dispersing them before they got stronger and keeping the sonic thump under 75dB. Such aircraft would be of a long and slender profile which distributes pressure disturbances over a longer axial distance (https://www3.nasa.gov/specials/Quesst/how-x59-designed.html  )

The X-59 dimensions: Note the symmetrical angles that will be spoken of as you move ahead. Pic Source: NASA

The highlevel specs of the X-59 are an overall length of 99.7’ , a wingspan of 29.7’ and a height of 14’. The all moving stabilizers have a span of approx 15’. For a long aircraft the wheelbase is just 17.6’. With the center of gravity exactly above the main landing gear borrowed from an F-16. The aircraft is area rule compliant.

To prevent the formation of a N wave , the X-59’s nose is over a third of the X-59’s length at between 30-35 feet to canard, 38 feet to cockpit. The nose of the X-59 is treated as an independent structure before being mated to the fuselage and is manufactured by Swift Engineering.

A frontal view of the nose presents a flat almost duck beak-like profile with a tip in the middle. The top view of the nose tip looks like swept back wing leading edges. The highly sculpted surfaces leading off the nose leading edge look like the nose ramping upwards and back towards the cockpit and a relatively flattish profile leading back towards the rearset nose landing gear. The reason for the shape of the nose is having a conical shape like earstwhile Concorde leads to shockwaves going off in unpredictable directions and in some cases blanketing the vertical rudder. As we move further back the nose cross section transitions from the flat tip to an elliptical type of complex shape as it moves up towards the cockpit. The nose funnel cross section is approx 2 x 2 feet. Overall the nose with its length and continuous uninterrupted design ensures the first shockwave off the tip is soft and has nowhere to merge into propagating downwards and staying soft (below 75dB).

A front view of the nose, note the flat profile. The nose camera is visible, along with the canards and the wings. Note the under wing sculpting. Pic Source: NASA

Just before the cockpit at around the 30-35 foot mark aft of the nose tip are the X-59’s fixed canards. They serve two purposes, the first is shockwave separation , distribution and keeping it off the cockpit & eXternal Vision System (XVS, more on this later), the second is to provide forward lift. The X-59’s design is such that the wings are at mid fuselage and the single engine is right back under the vertical T tail, to compensate for the unbalanced lift (as the centre of gravity moves rearward) generated by the lifting surfaces towards the rear of the X-59, the aircraft needs fixed canards that are upward canted generating a dihedral angle. Such positioning helps the X-59 generate a nose up pitch in cruise (at low speeds with their 63° swept angle, they generate vortex lift at high AoA) and maintain balanced flight without generating drag. Furthermore the canards interact with the shockwaves coming off the nose and with the wings further back to ensure shockwave strength is at a minimum, this helps with sonic boom mitigation. The trailing edges of the canards meet the fuselage at 59° angle with the fuselage. Such angling helps with boom mitigation as well. The canard root chord is 10.2’, tip chord of 3.8’ and the span is 13’. The canards generate approx 15-18% of total lift. The canards are subtly blended into the forward fuselage.

The nose design of the X-59 is such that there can be no cockpit canopy bubble like most experimental aircraft. Instead the cockpit of the X-59 has one major similarity to Charles Lindberg’s, Spirit of St Louis, both of them do not have a forward windshield and both of them use side windows to help with external pilot vision. In the Spirit of St Louis , Lindberg had to look out the flat side windows, in the case of the X-59 the side windows are contoured and offer a truncated forward view with the vision line running parallel to the nose. What the X-59 has is the XVS. The XVS consists of two high resolution 4K cameras, one is on the upper nose just forward just forward of where the cockpit windshield would have been, the camera is fairinged to deflect shockwave formation. The bottom camera is just forward of the nose gear and approx 12-18 feet aft the nose tip. The feed from both cameras is processed by the XVS computer for real time stitching and augmentation and overlaid on the secondary cockpit display which includes augmented reality (AR such as runway lines, glide slope indicators & Traffic Collision Avoidance System (TCAS). The latency is >50ms and is designed to feel natural to the pilot.

Note the gap between the wings & canards, the cockpit side windows, the camera, landing gear from an F-16 and the engine cowling. Area Ruling clearly visible. Pic Source: NASA

The flat (0°)low aspect ratio (AR) wings of the X-59 are a double delta(such wings trade pure supersonic speeds for incremental low speed handling) with the inward leading edges of 76° and outward leading edge of 68.6°, the crank is at approx 50-55% outboard sweep. The leading edge of the wings starts about a foot behind the canard trailing edge root (approx 45’ from the nose tip), the geometry of the canard trailing edge is such that the canard tip appears to be at the same level (or close) to the wing leading edge. Such architecture is critical to boom splitting, while at the same time maintaining aerodynamic continuity. The leading edge of the wings starts exactly at the cockpit side windows. The wing root chord is 25’ and the wings feature a washout of approx 2-3° for tip stall mitigation. 

The trailing edges of the wings have a pair of inboard flaps and the outboard ailerons (with restricted movement to avoid fouling up with the crank)are just beyond the trailing edge crank. The canards work in tandem with the ailerons by providing a small positive deflection and reducing mid body shock by 4%. We realize the X-59 is actually a cranked arrow (read here: https://theaviationevangelist.com/2025/10/02/lambda-wings-moving-wingtips-flying-wings-part-3/ ). The trailing edge crank is approx 50-55% of the span with an inboard sweep of 59° and an outboard sweep of 63°. We also observe matching canard angles (something stealth aircraft implement (https://theaviationevangelist.com/2025/10/22/the-theory-of-stealth/ ). The trailing edge allows inboard and outboard control surfaces to be decoupled. Area rule compliance is important for all transonic aircraft and the trailing edge crank ensures the same. 

The lower wing root is seamlessly blended into the fuselage underbelly using area rule sculpting to avoid waist shock like what Concorde had. The 22’ of blending appears to look canoe-like and is 1.8’ at the deepest point between the wing and fuselage. The blending reduces underside pressure by 18%. The sculpting incorporates fuel tank #2.

The all moving horizontal stabilizer has a span of 26.2’ (almost as large as the wings) root chord 14.6’ and a tip chord of 5.9’. Here is where it gets interesting! The area of the stabilizers at 2582 ft is actually larger than the wings at 2152 ft!! The reason for this is at Mach1.4 and 55,000’ the stabilizers are responsible for pitch control. The leading edge 63° (we now have the canards and horizontal stabilizers & wings having similar angles). The trailing edge of the stabilizer has a forward sweep of 12.6°. Such a design delays tail shock and extends pressure recovery, the delay is 22ms v/s a neutral trailing edge. A front view of the aircraft highlights how the canards & wings are mounted at two distinct vertical heights relative to the fuselage waterline. Such a placement further prevents shockwaves merging by separating them vertically, thereby reducing boom strength. ( Carnards at 1.8’ above the wing and the horizontal stabilizers appear to run at a similar angle and height to the wing). 

A rear view of the X-59 showing the engine aft tray, horizontal stabilizers, wings with ailerons, vertical T tail. Pic Source: NASA

The vertical tail assembly of the X-59 includes the engine fairing (the engine sits on top of the fuselage using area ruling) , the vertical tail above it and the T tail at the top. Behind the engine is the aft shelf that extends about 3-4’ under the engine exhaust to divert supersonic exhaust upwards, without it the jet’s mach diamonds will interact with the fuselage boundary layer amplifying sonic booms. 

The vertical tail of the X-59 is 14’ tall (including the engine height) with a backward sweep of 59° and a pure tail height of 10.5’. The horizontal fins on the T tail appear to have a similar geometry to the canards albeit about half the size.

The Engine

The X-59 uses a single GE F-414 low bypass afterburning turbofan with a bypass ratio of 0.25:1. The same engine is used on the F-18 Super Hornet. As mentioned earlier the engine is mounted on top of the fuselage and below the vertical tail fin. The engine produces 14,000 pounds of thrust dry and 22,000 pounhds of thrust with full afterburner. The engine with a service ceiling of 60,000’ is capable of handling the X-59’s test parameters.

The engine Shock diamonds flowing over the aft shelf. Pic Source: NASA

Materials & Construction

Over 85% of the aircraft is made of carbon fibre reinforced polymers (CFRP), working with such a material helps achieve the complex aerodynamic shaping of the X-59. The nose of the aircraft which weighs in at approx 300 pounds is a hollow CFRP cone. The inside of the nose has between 6-8 CFRP bulkheads that are each spaced about 4-6’ apart. Between the bulheads are between 8-12 stringers that run the full length of the nose cone. The nose is OOA (Out of Autoclave) cured to hold precise shape and is bolted to the fuselage with shear resistant bolts at flange joints that transfer loads to the fuselage. The nose is pressurised at 2-5psi with dry nitrogen. This increases panel stiffness by between 30-40% and helps boom consistency while preventing flutter and protecting avionics.

The fuselage is a central load bearing barrel that integrates 4 fuel tanks that hold 12,500 pounds of fuel, enabling the aircraft a range of 3,500nm. Furthermore the fuselage also integrates the cockpit and avionics. Titanium is used in the X-59 wherever it comes in direct contact with CFRP. The wingbox is aluminium and is bonded to CFRP skins via co-cured doublers. All the other bulkheads in the fuselage are CFRP (Toray 2510 prepeg). The forward engine firewall is titanium-aluminium-vanadium (Ti-6Al-4V), while the mid engine ring is Inconel, the aft nozzle is CFRP+Inconel liner.

Summation

The X-59 promises a fresh new look at supersonic flight and the data collected will be invaluable to future supersonic airliners. With a total of approx 50-100 flights planned over a 2-3 year period, the first 20-30 flights are expected to be subsonic and will test onboard systems. The next 20-40 flights will be transonic (over Mach 1.0) and will focus on acoustic measurements over remote areas such as Edwards AFB. The final 10-20 flights are planned over cities such as Galveston,TX and others to gather public perception. 

The first planned supersonic flight is expected to be mid 2026….

Innovation is Key…

Before you Leave

Read More Amazing Content at: https://theaviationevangelist.com keep scrolling down, and do share

Follow me:

LinkedIn : https://www.linkedin.com/company/the-aviation-evangelist/

X : @ManiRayaprolu

Reddit : r/theaviationevangelist

Facebook : https://www.facebook.com/profile.php?id=61583497868441#

https://www.instagram.com/theaviationevangelist?igsh=ZjA5YXI3MWd3OGZs&utm_source=qr